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Abstract

With the growing use of deep learning methods, particularly graph neural networks, which
encode intricate interconnectedness information, for a variety of real tasks, there is a ne-
cessity for explainability in such settings. In this project, we demonstrate the applicability
of popular explainability approaches on Graph Attention Networks (GAT) for a graph-
based super-pixel image classification task. We assess the qualitative and quantitative
performance of these techniques on three different datasets and describe our findings. The
results shed a fresh light on the notion of explainability in GNNs, particularly GATs.
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1. Introduction

Deep Neural Networks have been criticized for being black boxes of information. To explain
the results generated by these models, a variety of techniques have been used to enhance
their interpretability. For example in Figure 1 (b),(c), the heat maps show the explain-
ability results on a Convolutional Neural Network (CNN), ResNet-50, which performs a
classification task (Petsiuk et al. (2018)). As can be seen from the importance map of cow,
the model confuses the black sheep for a cow and thus mispredicts its presence in the im-
age. Such answers, obtained using explainability methods, can be useful in rectifying the
mistakes of a model. Graph Neural Networks (GNNs) are deep learning models which have
proven to be a powerful tool for exploiting graphical information. They do so by combining
the node feature information with the graph structure by passing messages along the edges
of the graph which makes GNN a complex model. GNN explainability can increase trust in
GNNs, improve transparency of model’s working and allow users to identify and improve
GNN’s mistakes.

Traditional convolutional networks use kernels that are limited to domains which use
rectangular grids such as 2D images. However, the more complicated sources of visualisa-
tions like panoramas capture 360 degree view of a place. Additionally, point cloud classi-
fication relies on spatially unstructured data which again cannot be represented through a
rectangular grid. We can exploit GNNs to solve the above two problems. The use of graphs
allows us to model images using pixel level representation or super pixel level representa-
tions of images, which are a group of pixels that share common characteristics (like pixel
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intensity). Superpixels have a perceptual meaning since pixels belonging to a given super-
pixel share similar visual properties. They provide a convenient and compact representation
of images that can be very useful for computationally demanding problems.

In this project, we choose to perform superpixel image classification with a broader
aim to provide explainability to the GNN predictions. We then compare the explainability
results on varying the number of superpixels in the image. Finally, we look at a way to
measure these explainability results known as Fidelity.

(a) Sheep - 26%, Cow - 17% (b) Importance map of ‘sheep’ (c) Importance map of ‘cow’
Figure 1: CNN explainability visualisation from Petsiuk et al. (2018)

2. Related Work

The difficulty in interpretation and explanation of performance of deep neural networks
has been a long standing problem (Pope et al. (2019)). Several explainability methods
have been developed for deep neural networks, specially CNNs (Simonyan et al. (2014),
Selvaraju et al. (2020)). Methods like Gradient-weighted Class Activation Mapping (Grad-
CAM), and Excitation Back-Propagation (EB) have proven to be quite effective on CNNs
for image classification tasks. More recently, the work (Pope et al. (2019)) demonstrates
tools for explaining the performance of Graph Convolutional Neural Networks (GCNNs)
on visual scene graphs and molecular graphs. By considering each pixel as a node, graph-
based approaches can be directly applied to images. Lower-level image representation (e.g.,
Super-pixel segmentation) can, on the other hand, be more effective in classification tasks
due to the smaller graphs that are formed. Avelar et al. (2020) present a methodology for
super-pixel image classification using Graph Attention Networks.

3. Problem Description

A superpixel is a collection of pixels that share similar features like color, pixel intensity,
etc. These superpixels give a simple and compact visual representation of an image without
losing its perceptual meaning. Many fundamental tasks in computer vision can be applied
to these over-segmented and simplified images, including image classification (Long et al.



(2021)). These superpixels can be generated using several approaches like Simple Linear
Iterative Clustering (SLIC, Achanta et al. (2012)), Superpixels Extracted via Energy-Driven
Sampling (SEEDS, den Bergh et al. (2013)). We use the SLIC algorithm for this task which
uses an iterative approach to perform the segments for a desired number of equally sized
superpixels. Figure 2(b) shows the superpixeled version of the image 2(a). This super-
pixeled image is further formulated into a graph structure by a simple region adjacency
graph generation approach. Fach superpixel segment is representative of a node in the
graph and all the neighbouring segments form the edges with this node. Figure 2(c) shows
the generated graph for the image. This entire graph acts as an input to our GNN model
which performs the task of superpixel image classification.

Figure 2: Superpixel graph generation - a) shows the original image, b) shows the super-
pixels nodes formed using the SLIC algorithm, and c) neighbouring superpixel
nodes form an edge which are shown in blue and the nodes are shown in red

4. Dataset

We use the following three standard classification datasets in our experimentation. Each of
these datasets have 50,000 training, 10,000 testing examples and include 10 classes.

e MNIST (Lecun et al. (1998))

e Fashion-MNIST (Xiao et al. (2017))

e CIFAR-10 (Krizhevsky (2009))

5. Model: Multi-headed Graph Attention Network (GAT)

We use a multi-headed graph attention network to perform the task of super pixel image
classification. Similar to a GNN, this model generates contextualised node embeddings
based on the information that its constitutes (Adjacency matrix, Node Features, Edge
Features of the input graph). Graph attention network is a generalised version of a Graph
Convolution Network (Kipf and Welling (2017)), which allows the graphs nodes to generate
their embeddings by aggregating information from each of their neighbors.

GATs expand this basic aggregation method by using self-attention mechanisms (Vaswani
et al. (2017)) that learn the relative importance of each neighbor’s contribution, thus im-
proving its learning capacity. An attention coefficient is calculated for each edge in the input
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Figure 3: Attention mechanism on node 1 by its neighbourhood (Velickovic et al. (2018))

graph, so as to improve the aggregation step. Also, similar to the Vaswani et al. (2017)
transformer architecture, multi-headed attentions are used in the Graph attention networks
for a stabilised learning. Figure 3 illustrates how the attention mechanism aggregates the
contribution of each neighbor for the node embedding hy.

The input to our GAT layer (Figured) is a set of node features h, where N is the number
of nodes, and F' is the number of features in each node.

h:{ﬁl,ﬁ%...,ﬁ]\,},ﬁieRF

A linear layer is then used to transform the input features into high-level features using a
weight matrix W. Now, for each edge (,7) in our input graph, we use a linear attention
mechanism (a) to compute its attention coefficient (e;;) that represents its importance in the
message passing step of this graph neural network. The input to this attention mechanism
is the concatenation of the node embedding of the involved nodes in the edge.
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These attention coefficients, for each node i, are normalised using a softmax operation across
all its neighbors (js).

o ()

(] @

B ZkGN(i) exp (eik)
The output features for each node are then aggregated using a weighted linear combination
of its neighbors’ features (the weight being the calculated attention coefficients). In case of
multiple heads, we concatenate the scaled attention scores obtained from each independent
attention mechanism to generate the final output embeddings.

I+1 0 _d
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We thus obtain highly contextualised embeddings for each node in the graph which can be
further be passed through feed-forward layers to achieve the task of classification.
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Figure 4: GAT Layer, figure inspired from Zhang et al. (2019)

Dataset | Accuracy (%)
CIFAR-10 49.73
MNIST (pretrained) 97.8
Fashion MNIST (pretrained) 89.6

Table 1: Model Accuracies

6. Experimental Settings: Training and Evaluation

For each dataset, we set the number of desired super-pixel segments to be 75 and train them
on a three-headed Graph Attention Network. All experiments are conducted on GPUs. The
training on CIFAR-10 dataset for 250 epochs takes around 10 days. Figure 5 shows the
variations in classification loss, training and validation accuracy with number of epochs.
Table 1 shows the testing accuracies obtained on the three datasets using their correspond-
ing trained models. We use these trained models to perform a variety of explainability
methods in an attempt to retrieve useful interpretations and insights on their performance
and learning behavior.

7. Explainability Methods

We utilise four different explainability methods which were originally intended to work on
CNN and can be extended to GCN (Pope et al. (2019)). The methods are Contrastive
Gradient-based Saliency Maps (CGSM) Simonyan et al. (2014), Class Activation Mapping
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Figure 5: Training curves on CIFAR-10 dataset

(CAM) Zhou et al. (2015), Grad-Class Activation Mapping (Grad-CAM) Selvaraju et al.
(2020), Guided-Backpropagation (GBP) Springenberg et al. (2014).

7.1 Contrastive Gradient-based Saliency Maps (CGSM)

CGSM is the most straightforward way to implement explainability. This method relies on
the derivative of the output of the model with respect to the input image. We apply ReLU
to the gradients to discard negative gradients.

where y¢ is the score of class ¢ and x is the input. It is argued that CGSM represents noise
more than signals.
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7.2 Class Activation Mapping (CAM)

CAM is based on the motivation that the class features at the last convolutional layer
are more meaningful. CAM has an architectural constraint in which it requires the layer
immediately before the final softmax classifier to be a convolutional layer followed by a
global average pooling layer. Assume, Fj, to be the k" feature map of the output from last
convolutional layer. The global average pooling is defined as:

ep = % Z Z Fyij
J
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The global average pooled output is then passed to a softmax classifier to get the output

class scores.
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The importance of a pixel in CAM is defined as:

L¢ anli, j] = ReLU (Z wiFk,i,J)

k

7.3 Grad-Class Activation Mapping (Grad-CAM)

Grad-CAM relaxes the assumption the architectural restriction put forward by CAM by
replacing the feature map weights with the back propagated gradients.
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7.4 Guided-Backpropagation (GBP)

The motivation behind Guided-Backpropagation is to discard neagtive gradients during
backpropagation as negative gradients play the role of suppressing the output. As shown in
Fig 6 we compute gradients, then zero out the negative ones and continue to backpropagate.

+ B < a

Compute gradient, zero out negatives, backpropagate

Figure 6: Intuitive explanation of guided backpropagation (GBP)

8. Explainability Quantification: Fidelity

We use the Fidelity score as the quantification metric for all the explanaiblity methods. The
key idea behind Fedality is that the occlusion of important features, discovered through the
obtained explanations, on the original image would lead to a reduction in classification ac-
curacy. It is defined as the difference in accuracy obtained by excluding all nodes with a
saliency value greater than 0.01 (on a scale 0 to 1). Figure 7 shows the fidelity scores of
each of the above discussed explainability methods with varying threshold on the MNIST
dataset. We observe that out of all the 4 methods, Guided-Backpropagation (Section 7.4)
shows the best fidelity, i.e. occluding its strongly identified regions from the image, leads to
higher number of misclassifications. We also observe that on increasing the threshold (i.e.,
occluding lesser number of nodes), the fidelity score decreases because occluding less number
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Figure 7: Fidelity metric results on the four explainability methods by varying occlusion
threshold

of nodes would generally lead to a very less change in the classification accuracy. However,
in Guided-Backpropagation, the fidelity scores do not decrease with increasing threshold.
The gradients in this method are backpropogated only through the relevant neurons, which
means that the contributing pixels have a direct and significant correlation with the classi-
fication output. Thus, even on occluding lesser number of nodes, the misclassifications are
still observed because of the high saliency values of the occluded nodes.

9. Results

In this section, we show explainability results on the three datasets and provide a quali-
tative analysis of the results obtained. The figure 8 shows the visualisations from all the
four methods on an example from MNIST dataset representing the number ‘6’. We ob-
serve that Guided Backpropagation seems to capture all the nodes involved in making the
number look like the number ‘6’, and hence performs the best. We also observe that the
Vanilla Backpropagation method has the maximum noise and the Guided Grad-CAM has
the minimum noise, however they both fail to fully capture all the important nodes.

The figure 10 shows the visualisations by varying the number of superpixels in the image.
From the figure we observe that as the total number of superpixel increases from 25-150,
the total amount of region enclosed outside ‘0’ decreases, thus we can say that the noise in
prediction decreases.

Figure 11 shows an exmaple image from a MNIST dataset super-pixeled with varying
number of segments. We also compare the % classification accuracy of the GAT model with
varying number of nodes in the input graph. We observe that using a very few number
of nodes leads to loss of information which leads to the classification accuracy of 35% on
the MNIST dataset, whereas increasing the number of nodes to 150, leads to increased



Figure 9: Visualizations

Figure 10: Visualization of GBP by varying the number of superpixels on ‘0’ from MNIST
dataset

Figure 11: Variation in the superpixel graph on varying the number of desired superpixels
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Figure 12: Accuracy vs Varying no. of superpixels

complexity in message passing and also leads to the formation of super pixels that do not
carry forward a perceptual meaning. This again leads to a decrease in the overall accuracy.
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Figure 13: Visualizations Results on CIFAR 10 dataset

The figure 13 shows some explainability results on the CIFAR-10 dataset. We observe
that the silhouette of the explainability visualizations match the objects depicted in the
image. This provides assurance on the quality of the explainability visualizations we get.
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10. Conclusion

In this project, we performed superpixel image classification task on three standard clas-
sification datasets and visualized various explainability methods in Graph Neural Network
settings, particularly Graph Attention Networks (GATs). We characterized the explanations
with the fidelity (quantification metric) and found that Guided-Backpropagation method
shows the best performance amongst all the methods. We also provide performance analysis
of the explainability methods with varying number of superpixels in the images during the
classification task.
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